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PAVE: Write-print Creation with MapReduce

Leo St. Amour, Frederick Ulrich, Andreas Kellas, Alexander Molnar, and Suzanne J. Matthews

Abstract—Cyber-crime is becoming alarmingly common through the use of anonymous e-mails. Author attribution helps digital
forensics investigators filter through a large set of possible authors and focus traditional investigative techniques on the most probable
culprits. A recent promising technique is to construct a write-print for each known author and compare it to the write-print extracted from
the anonymous message(s). A write-print is a unique digital fingerprint created by mining frequent patterns from a particular author’s
writing style. Parallel computing enables us to leverage multiple cores in the creation of author write-prints. We introduce Parallel Author
Verification of E-mail (PAVE), a MapReduce algorithm for generating author write-prints in parallel. Our algorithm is able to achieve up
to 90% accuracy when tested on a subset of the Enron dataset. We believe the community will find the PAVE system useful to expedite

author identification in time sensitive situations.

Index Terms—author verification, parallel computing, data mining, write-print, Enron

1 INTRODUCTION

He author identification problem seeks to determine
Tthe most likely author from a group of known
authors. Author attribution methods have traditionally
been applied to the literary domain. Famous examples
include determining the authorship of the Federalist
Papers [1], and the recent outing of JK Rowling [2] as
the author of The Cuckoo’s Calling.

The advent of the digital age caused the author iden-
tification problem to extend beyond literary authorship
to include electronic authorship of documents such as
e-mails and blog posts. Author verification is especially
difficult for e-mails, as the length of e-mails tend to be
short. Longer documents are easier to analyze, due to the
presence of more data. Forsyth and Holmes [3] suggest
that 250 words is the minimum length for effective
authorship attribution. A more recent survey suggests
that it is not yet possible to determine a minimum
threshold [4]. Despite this, accurate author attribution
on short segments of text becomes more desirable as the
popularity of short electronic communications such as
e-mails and texting continues to grow.

Write-print analysis [5], [6], [7] is a recent e-mail
author attribution technique that shows considerable
promise. To create a write-print, a combination of sty-
lometric features is used to identify a set of frequent
patterns that represents an author’s writing style [5].
In typical author attribution approaches, these features
are selected individually for analysis. Selecting “good”
features that capture an author’s writing style is critical
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to generating useful write-prints. Adding additional fea-
tures at random can inadvertently increase the amount of
noise in the dataset, reducing accuracy [7]. Prior work [5]
for feature selection conducts hueristic searches on a
feature space. As the feature space gets large, this step
can take a long time.

One of our major goals is to enable author iden-
tification in time-sensitive situations. For this reason,
we chose to focus on the write-print method imple-
mented by Igbal et. al. in their AuthorMiner software.
AuthorMiner is novel because it filters out features that
are shared among multiple authors. Thus, each author’s
write-print is composed only of the features that are
unique to them. This eliminates the feature selection
step. When run on a subset of the Enron e-mail corpus [8]
consisting of 6 authors each with 20 e-mails (120 e-
mails), AuthorMiner achieves an attribution accuracy of
between 86% to 90% [7]. On a different configuration
of 10 authors with 10 e-mails (100 e-mails), attribution
accuracy ranges from 80% to 90% [7]. These results
suggest that AuthorMiner’s write-print method is an
effective technique for e-mail author attribution.

We focus on reproducing the results achieved by Au-
thorMiner. The AuthorMiner code (like other systems
for e-mail author attribution) is not publicly available.
The paper does not report running time, leading us to
hypothesize the method may be inefficient. Furthermore,
the authors only test their approach on a maximum of
10 authors and 120 e-mails. We wish to explore if the
reason for this restriction was due to runtime, accuracy,
or a combination of both. To this end, we developed a
MapReduce algorithm called Parallel Author Verification
of E-mail (PAVE) for determining author write-prints in
parallel. Our goal was to produce write-prints quickly
and verify the accuracy of write-prints on the data sizes
specified in the AuthorMiner paper.

Lastly, while much research exists on techniques for
e-mail author attribution, few (if any) practical systems
exist. Those that do are closed-source, meaning that it is
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Fig. 1. Feature Identification
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Fig. 2. Equal-width Discretized Binning

almost impossible for an organization to quickly acquire
the tools necessary to enable e-mail author attribution
(unless set up ahead of time) in cases where threats
of a time-sensitive nature are made. Unlike previous
implementations, we plan to make the final version of
PAVE available to the general public.

The rest of this paper is organized as follows. Section 2
summarizes AuthorMiner’s core algorithm. We cover
our MapReduce algorithm in Section 3. In Section 4 and
Section 5 we discuss our experimental framework and
results. Finally, we conclude in Section 6.

2 AUTHORMINER

Igbal et. al. present a novel algorithm and system for
determining e-mail authorship called AuthorMiner. The
algorithm can be broken into three phases: mining a
candidate set of features; computing frequent patterns;
and filtering out common frequent patterns to compute
the write-print. We describe the different phases of the
algorithm in the subsections below. To illustrate the
workings of AuthorMiner, we use an example consisting
of three authors, each with three emails (n = 3, m = 3).

2.1 Phase 1: Mining a Candidate Set of Features

The first phase concentrates on extracting features of in-
terest from an author’s email set and determining which
features are considered frequent. Suppose we want to
mine three authors for features A, B, and C, which
represent words “of” ,“have”, and “are”, respectively.
Figure 1 demonstrates the results of extracting feature
A from author E1’s three emails, which are shown at
the bottom of the figure as snippets. The frequency of
each feature is normalized by the length of the e-mail.
AuthorMiner uses equal-width discretization as the
primary binning strategy for each feature. Figure 2
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Fig. 3. Extracting frequent patterns

demonstrates this process. Consider the word “of”,
which appears three times in e-mail e;. We normalize
this frequency by the number of elements in the feature
class (e.g. function words) Since e-mail e; has 11 total
function words, the relative frequency of the word “of”
is 0.27, placing the word in the second bin, which covers
frequency range 0.16 to 0.33. This is represented as
feature Al. Author E1’s uses of the word “of” fell into
the second bin for Emails e; and e3, and into the third bin
for Email e,. This process continues until each feature is
placed into the appropriate bin for all emails.

2.2 Phase 2: Computing Frequent Patterns

A feature is considered frequent if it appears within
a specified percentage called the minimum support
(Min_Sup) of an author’s e-mails. In the examples that
follow, we use a Min_Sup = 0.5, indicating that a
feature must appear in at least 50% of the author’s e-
mails in order to be considered frequent. At the end of
the last phase, we calculate an initial set of features by
considering only those features with a frequency greater
than the Min_Sup. In our example, the features A2, B4,
C1 meet the threshold Min_Sup = 0.5 and constitute the
author’s initial frequent pattern set, or candidate set.

Next, we look at all n-combinations of elements in
the candidate set to identify which of those meet the
Min_Sup threshold, where n > 1. AuthorMiner uses
the a-priori combinatorial feature mining algorithm [9] to
accomplish this. Returning to our example in Figure 3,
where we concentrate on author E1 and his set of e-
mails, the candidate combinations are (A2, B4), (A2, C1),
and (B4, C1). The pair (B4, C1) is the only one to meet
the threshold of Min_Sup = 0.5 because these features
appear together in the same e-mail in more than half of
the e-mails. Thus, author E1’s set of frequent patterns is
{A2, B4,C1,(B4,C1)}.

2.3 Phase 3: Computing Write-prints

Phase 3 of AuthorMiner involves filtering out frequent
patterns that are common to more than one author.
Figure 4 shows the frequent pattern sets for our three
authors. Note that features A2, B1, and C1 are present
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Fig. 4. Eliminating Common Frequent Patterns to Gener-
ate Write-prints
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Fig. 5. Comparing write-prints of known authors to un-
known e-mail

in more than one author’s frequent pattern set, and
therefore must be removed. Once all common frequent
patterns are eliminated, the remaining set of patterns will
be unique for each author. Together, these unique fre-
quent patterns form a write-print (WP). The write-prints
for the three authors can also be seen in Figure 4. For
example, for the first author, the elimination of frequent
patterns A2 and C1 yields a write-print consisting of
the pattern set {B4, (B4,C1)}. AuthorMiner’s creators
note that this portion of AuthorMiner can take expo-
nential time with respect to the total number of frequent
patterns and the number of authors. Their exponential
algorithm takes O(|F P(E)|™) time, where |FP(E)| is the
number of frequent patterns belonging to author E and
n is the number of authors under consideration.

2.4 Comparing Write-Prints

To predict the author of an unknown e-mail, the write-
print of each author is compared to the unknown e-
mail. AuthorMiner determines similarity by assigning
each author a score based on Equation 1 [7]:

P_ | support(M P;|E;
Score(u ~ WP(E;)) = == |I/€'];(E(')| =

The score for each author i (E;) is calculated by
summing up the support (or relative frequency) of each
pattern that is common between E;” s write-print and
the unknown email and dividing it by the number
of features contained in the write-print. Higher scores
indicate greater similarity. Figure 5 illustrates the three
write-prints that were created earlier being compared to

an unknown email. The frequent pattern B4, and the
pair (B4, C1) appear in both the unknown email and in
author E1’s write-print. In this particular case, none of
the other features are in common between the unknown
email and either authors E2 and E3. This means the
unknown author’s writing style most closely matches
that of author F1, and this is returned as the predicted
author.

2.5 Limitations

There are several key limitations to AuthorMiner’s ap-
proach. Chief among these is the exponential complexity
of the step required to eliminating common frequent
patterns: O(|FP(E)|") [7]. We suspect this is why Au-
thorMiner’s experimentation was restricted to relatively
small numbers of authors (n < 10) and e-mails per au-
thor (m < 20). The algorithm also only uses short words
and function words. We were curious how additional
features would impact performance.

3 THE PAVE ALGORITHM

PAVE employs the MapReduce [10] framework for gen-
erating write-prints in parallel. Popularized by Google,
MapReduce is designed to parallelize the computa-
tions across clusters containing large numbers of ma-
chines [10]. To utilize MapReduce, programmers are
required to implement two functions: map () and
reduce (). The underlying scheduling framework au-
tomates the rest of the process. The map () function
processes the input and produces an intermediate set of
(key, value) pairs. The reduce () function combines and
processes all values with the same key to produce some
reduced output. We utilize Phoenix++ [11], an open-
source, shared-memory implementation of MapReduce
that enables users to write high performance code [12].
We hybridize Phoenix++ with MPI to exploit multiple
nodes and cores. The PAVE algorithm is split into three
phases, mimicking AuthorMiner’s setup.

In the subsections below, we use the same n = 3 and
m = 3 example from the AuthorMiner section. The MPI
layer starts by requesting n nodes, and running Phase 1
MapReduce on each. This first MapReduce phase pro-
cesses the author’s m e-mails and extracts a candidate set
of frequent patterns for each author. Thus, for Phase 1,
there are n MapReduce jobs running in parallel (multi-
node), with each MapReduce job processing m e-mails
in parallel (multi-core). In Phase 2, we use the a-priori
algorithm to generate frequent patterns for each author,
a serial process. In Phase 3, we utilize another MapRe-
duce phase (multi-core) to eliminate common frequent
patterns and compute author write-prints. We describe
each these phases in detail below.

3.1

Our first MapReduce phase mines an author’s set of e-
mails for selected features and computes the candidate

Phase 1: Extract Frequent Patterns
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set (1-frequent patterns) for that author. The feature sets
we consider are short words and function words. In
order to reproduce AuthorMiner’s results, we use the
same list [13] of function words used by AuthorMiner,
and define a short word as a word with four or less char-
acters. Each author is assigned to a separate node via an
MPI wrapper. The wrapper then executes the described
MapReduce phase for each author on its assigned node’s
multiple cores.

Figure 6 demonstrates this MapReduce process. In
our example, author E; has written three e-mails: e,
ez, and es. Each mapper extracts the set of features
of interest contained in a particular e-mail, and emits
intermediate (key, value) pairs of the feature and e-mail
id. The features of interest are represented by A, B,
and C (corresponding to “of”, “have” and “are). In
accordance with AuthorMiner, PAVE uses equal-width
discretized binning of each feature, and a total of six
bins. Thus A2 represents that “of” falls into bin 2. E-
mail e; emits three features, A2, B4, and C1. Each of
these features is emitted along with the id of the e-mail
it came from (in this case, e1) to form an intermediate
pair.

The intermediate pairs are combined and sorted into
(key, list(values)) pairs, where each unique feature id is
paired with the associated set of e-mail ids that con-
tain it. These pairs are input into the reduce function.
The reduce function only emits pairs where the feature
occurs above a minimum threshold (Min_Sup). In this
example, the Min_Sup = 0.5, representing that each
feature must appear in at least 50% of the author’s e-
mails. The only features that satisfy this requirement are
A2, B4, and C1. These three features form the 1-pattern
set of frequent patterns for author E1. Note that each
independent reducer operates in parallel and on multiple
cores.

3.2 Phase 2: Computing Frequent Patterns

We use the trie-based a-priori algorithm described by
Bodon [14], which is open-sourced at http://www.

prints

cs.bme.hu/~bodon/en/apriori/. Bodon’s a-priori algo-
rithm is implemented in C++, aiding in our ability
to incorporating it into PAVE. While multiple papers
discuss parallel a-priori algorithms, we were unable to
find an open-source implementation. As a result, the a-
priori portion of the PAVE system is serial. Designing
and implementing a parallel a-priori implementation was
unfortunately outside the scope of the current work.

3.3 Phase 3: Computing Write-prints

The next phase of MapReduce identifies the set of
frequent patterns unique to each author. Unlike the
previous MapReduce phase, which operate on multiple
nodes and multiple cores, this phase operates on mul-
tiple cores of a single node. This layout is necessary in
order to compare each author. The input to this phase
is the frequent patterns of authors FE;, F3, and Es.
Following our example, author E1’s frequent patterns
are {A2, B4,C1, (B4,C1)}, author E2’s frequent patterns
are {A2, B1,C?2, (A2, B1)}, and author E3's frequent pat-
terns are {B1,C1,(B1,C1)}.

Each mapper emits a (key, value) pair consisting of a
frequent pattern feature and its corresponding author.
For example, for author £1, we emit the pairs (A2, £1),
(B4, E1), (C1, E1), and ({B4,C1}, E1). The combiner
identifies the set of authors common to a particular fre-
quent pattern feature, and outputs (key,list(value)) pairs,
where the frequent pattern is the key, and the list of
values is the set of authors containing that particular
frequent pattern. For example, the combiner emits (C'1,
(E1, E2)), since C1 is a frequent pattern of both authors
E1 and E2. The reduce function then emits frequent
patterns that are unique to a particular author. Thus,
frequent pattern C'1 is not emitted, since it shared by
authors E'1 and E2.

The emitted frequent patterns are organized to form
write-prints for each author. We follow AuthorMiner’s
example for comparing unknown e-mails to the known
write-prints (Figure 5).
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Fig. 8. Overview of Data Preprocessing

4 EXPERIMENTAL SETUP

In this section we outline our experimental methodology
and setup. We will discuss how we pre-process our
email data set, set up our experiments, and discuss our
methodology for predicting the author of an unknown
set of emails. While we are attempting to replicate the
results of AuthorMiner, we have made a number of
assumptions that we will discuss in this section.

4.1 Data Pre-processing

The Enron Corpus [8] is the largest publicly available
database of real e-mails. It contains over 600,000 emails
written by 158 Enron employees [8]. The emails are
organized into 158 directories, one corresponding to
each author. Each author’s directory contains separate
directories for the inbox, sent folder, deleted items, and
others.

AuthorMiner’s creators do not explicitly state how
the Enron corpus was pre-processed prior to their ex-
perimentation. For the purposes of our research, we
decide to only use emails that are in “sent” directories,
as these e-mails are almost always written by the author
in question. This reduces the dataset to 126, 584 e-mails.
For each author, all forwarded emails are removed, and
headers and reply chains are stripped, leaving only
author-written content (Figure 8). After pre-processing,
our data set consists of 42,524 e-mails. The median
number of e-mails per author is 289.

Following Igbal’s example, we divide our data set into
two sub-sets. Two-thirds of each author’s e-mails (28, 350
total) form the training dataset and are dedicated to
creating the reference write-print. The last one-third of e-
mails (14, 174) of each author are used for testing, and are
used to create a write-print for our “unknown” author.
To reproduce AuthorMiner’s results (with m = 20 e-
mails for the reference write-print), we need to use
authors with a minimum of 30 e-mails. Of the 150
authors, only 119 (81%) had 30 or more e-mails.

There are limits in the experimental design of Au-
thorMiner — for example, the authors do not report
the rates of true positives or false negatives. However,
our goal in conducting this work is to reproduce Au-
thorMiner’s results. To that end, we did our best not to
stray from the experimental design as described in the
paper, and make assumption only as necessary.

4.2 Benchmarking Details

Performance benchmarking is conducted on the Garnet
high performance computing cluster hosted by the De-
partment of Defense’s Engineer Research and Develop-
ment Center (ERDC), which consists of 4,716 total com-
pute nodes. Each compute node has 64GB of RAM and
32 AMD Interlagos Opteron cores operating at a clock
rate of 2.5GHz. Since our primary goal is to reproduce
AuthorMiner’s experimental setup, we initially limit our
experimentation to at most 6 nodes.

We measure the overall run-time of our system. Phases
1 and 2 are tested as separate components for speedup,
as each has separate parallelizable components. Phase 1
is tested in both single node mode and multiple node
mode, in which each author’s frequent patterns were
mined on a separate node, while Phase 2 was tested only
in single node format.

We conducted our experiments by randomly selecting
n authors from our training dataset and m of those
author’s e-mails. In order to reproduce the AuthorMiner
results, we set n = 6 and m = 20 in our experiments.
Of the n authors, one is randomly selected to serve as
the “unknown” author. That author’s testing e-mails are
used to form an unknown write-print, which is then
compared to the write-prints created from the training
sets of our n authors. To replicate AuthorMiner’s re-
sults, we also restrict the Min_Sup values to 0.2, as
this support yielded the high accuracy numbers for
AuthorMiner. We use 6 bins for our equal-width dis-
cretized binning, as this yielded the best results [7] for
AuthorMiner.

To try and replicate AuthorMiner’s results, we initially
restrict the feature classes to include just function and
short words. We also add an additional feature (bi-
words), and study how it affects accuracy. Finally, we
create three distinct subsets of the Enron dataset. Non-
selective (containing no word minimum), a fifty-word
minimum set (each e-mail contains at least 50 words),
and a hundred-word minimum set (each e-mail contains
at least 100 words). We present run-time and accuracy
results for each of these classes.

5 RESULTS

We perform extensive testing to assess both PAVE’s
accuracy and speed. Our initial testing was hindered by
run time. The serial a-priori dominated the run-time, es-
pecially when a large number of frequent patterns were
outputted. Our solution was to implement a threshold
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Method Top1 | Top 2
Relative | 33.9% | 57.6%
Normal 30.0% | 50.0%
Tight (.3) | 25.8% | 36.2%
Tight (1) | 23.3% | 30.0%
TABLE 1

Binning method accuracy

Cores | MapReduce | A-Priori | Trans 1/0 Total

T 0.991 157137 | 0.008 | 140.503 | 298.64

2 0.517 134.118 | 0.008 | 132.523 | 267.167

4 0.235 140.361 | 0.009 | 146.676 | 287.281

8 0.085 140.301 | 0.008 | 144.801 | 285.195

16 0.136 139.57 | 0.007 | 145.088 | 284.801

32 0.119 139.885 | 0.009 | 144.937 | 284.951
TABLE 2

Phase 1 and 2 (One node): Six authors, 20 e-mails (in

seconds)

on the a-priori algorithm, which limited the number of n-
frequent patterns. So, if n = 4, the testing for additional
frequent patterns would stop at 4-frequent patterns. This
limit significantly reduced our run-time bottleneck. For
speed, the a-priori threshold was set to 4.

After determining an a-priori threshold that would
strike a balance between accuracy and speed, we tested
the impact of our different binning methods. The results
from our binning experiments can be seen in Table 1. The
equal-width discretized binning strategy described in
previous sections resulted in a large number of features
falling into the first bin, which affected accuracy. We
tried a number of related binning strategies, including
discretizing from the range 0...0.1 and placing those
higher in bin 6 (tight 0.1), and doing something simi-
lar with discretization occuring between range 0...0.3
(tight 0.3). We also tested a “relative” binning strategy,
which determined the “min” frequency and the “max”
frequency relative to a feature class, and performed bin-
ning based on this min and max. Our experimentation
suggests that the “relative” binning method outperforms
both the “tight” implementation and the normal equal-
width discretization, leading us to adopt it as our bin-
ning method of choice in the following experiments.

5.1 Run-time benchmarking

We measure the performance of Phases 1, 2 and 3 sepa-
rately, and consider the performance of the system as a
whole. Phase 1 was tested in both single node mode and
multiple node mode, in which each author’s frequent
patterns were mined on a separate node, while Phase 2
was tested only in single node format.

Table 2 depicts the the combined run-time results
of Phase 1 and 2 of our analysis on one-node. Phase
1 is the parallel MapReduce portion. Phase 2 is the
serial a-priori algorithm. The MapReduce portion of the
algorithm is very fast, processing six authors and 20-
emails in 0.085 seconds on 8 cores. This corresponds to

6
Cores | MapReduce
1 0.484
2 0.416
4 0.260
8 0.406
16 0.339
32 0.472
TABLE 3
Phase 1 (multi-node): Six authors, 20 e-mails (in
seconds)
Cores | MapReduce
1 9.120
2 7.477
4 6.643
8 6.550
16 5.917
32 6.317
TABLE 4

Phase 3: Six authors, 20 e-mails (in seconds)

a 11.65 times speedup over the 1-core execution. Despite
the fast execution of the MapReduce component, the
serial a-priori execution dominates execution time. For a
Min_Sup = 0.2, a large number of frequent patterns are
generated. The larger the number of generated frequent
patterns, the longer the a-priori time, and the longer the
I/0 time required to write the frequent patterns to a
file. Table 3 shows only the run-time of our Phase 1
MapReduce when using multiple nodes. In this case,
there is so little data going to the multiple nodes that
the communication overhead of using MPI outstrips the
benefit of using multiple nodes. We predict that with
larger number of authors and e-mails, this will become
less of an issue.

Table 4 shows the performance of the Phase 3 MapRe-
duce run. Recall the purpose of this phase was to elim-
inate common frequent patterns. Even on a single core,
our approach is fast, eliminating the common frequent
patterns in a group of 6 authors in 9.120 seconds. As we
increase the number of cores, we see a decrease in run-
time through 16 cores. Phase 3 MapReduce can eliminate
common frequent patterns in 5.917 seconds on 16 cores,
representing a speedup of 54%.

It takes 5 minutes for our parallel implementation to
generate the write-prints of 6 authors and a total of 120
e-mails. While the serial a-priori program takes up the
majority of our run-time, our MapReduce components
take just seconds to execute.

5.2 Accuracy benchmarking

The goal of our research was to reproduce the results
presented in the AuthorMiner paper, which reported ac-
curacy results of up to 90% [7]. To attempt to reproduce
these results, we conducted a number of experiments.
After determining which parameters yielded the highest
accuracy, we were still not able to duplicate the high
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Accuracy Results (n=6, m=20, bins=6, minsup=.2,
btype=relative, ap_threshold=4, features=all)
Top 1 Top 2
Non-selective 52.7% 65.5%
50 word minimum | 81.6% 91.2 %
100 word minimum | 90.9% 93.1%
TABLE 5

Accuracy results on different subsets of Enron data set.

accuracy rates reported by AuthorMiner. However, we
note that Igbal et. al were not explicit about what subset
of the Enron database they used. We therefore created
two subsets: a fifty word minimum and a hundred-
word minimum, where each set included authors and
their e-mails that had at least fifty or a hundred words,
respectively.

Running PAVE on these new datasets yielded much
higher accuracy. Our results are shown in Table 5. Before
setting a minimum number of words per e-mail, our
algorithm averaged 52.7% Top 1 accuracy. Enforcing a
50-word minimum resulted in a Top 1 accuracy of 81.6%.
Further increasing the minimum to 100 words allowed
PAVE to achieve accuracy of 90.9%. We believe that
by eliminating e-mails with smaller word counts, we
are increasing the number of possible features that can
be considered unique for an author. This leads us to
conclude that e-mails containing a single word or phrase
such as “Thanks” or “sounds good” do not greatly
contribute to an author’s write print, and should be
removed from consideration.

6 CONCLUSION

In this paper we introduce PAVE, a parallel algorithm for
author verification of e-mail. PAVE is a parallelization
of the AuthorMiner algorithm, proposed by Igbal et.
al. in 2008. The original AuthorMiner algorithm was
tested on a subset of 120 e-mails of the Enron corpus.
We hypothesized that the reason for this small subset
was the exponential run-time of elimination of frequent
patterns. Despite this, the AuthorMiner algorithm re-
portedly enjoyed very high accuracy results. Our initial
goal in creating PAVE was to create a fast algorithm
capable of doing authorship in time-sensitive situations,
and reproduce the results presented by the creators of
AuthorMiner. To this end, we designed a shared memory
distributed MapReduce algorithm that we deployed on
the DOD ERDC Garnet cluster. Using MapReduce allows
us to eliminate frequent patterns in a matter of seconds.

While these results highlight the efficiency of our
implementation, it raises several questions. First, how
fast does each of the components of AuthorMiner run?
AuthorMiner’s authors did not publish either their im-
plementation or run-time numbers. The a-priori step
took the majority of the time, constituting over 99% of
the total running time. It is possible that AuthorMiner
implements a more efficient (yet unavailable) version
of the a-priori algorithm. If so, PAVE'’s bottleneck could

be further reduced. It is also unclear if the a-priori step
was a bottleneck in AuthorMiner’s implementation. It
is possible that the speed of our implementation allows
the a-priori method to now be a bottleneck. Despite this,
our total authorship process took about five minutes.
Future work will concentrate on creating a parallel a-
priori strategy to incorporate into PAVE.

We were further surprised to discover that when run
on a random subset of the Enron database, we were
unable to to reproduce AuthorMiner’s results. What did
the subset of e-mails used by AuthorMiner look like?
When we queried the authors of AuthorMiner about
this, we did not get a response. When we create a subset
consisting of e-mails with a hundred words or more, we
were able to finally achieve the accuracy numbers re-
ported in the AuthorMiner paper. Further exploration is
necessary to fully understand why this is the case. In the
future, we also plan on exploring alternate approaches
to gain high accuracy on e-mails with a smaller length.
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